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Abstract 

The Linear Quadratic Gaussian (LQG) algorithm as  presented in Refs.[l] and [2] 
has been used to control the JPL’s  beam wave-guide [2], and 70-m [3] antennas. This 
algorithm signlJicantly improves tracking precision in a wind disturbed environment. 
Based on  this algorithm and the implementation experience a Matlab based Graphical 
User Interface (CUI) was developed to design the LQG controllers applicable to 
antennas and radiotelescopes. The GUI is described in  this  paper. It consists of two 
parts: the basic LQG design and the Jne-tuning of the basic design using a constrained 
optimization algorithm. The presented  GUI was developed to  simplljj the design process, 
to make the design process user-friendly, and to enable design of an LQG controller for 
one with a limited control engineering background. The user is asked to manipulate the 
GUI sliders and radio buttons to watch the antenna performance. Simple rules are given 
at the GUI display. 
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1. Introduction 

The  NASA  Deep  Space  Network  (DSN)  antennas serve as a  communication tools for 
the space  exploration.  DSN antennas are  located  at three complexes: in California,  Spain, 
and  Australia.  Viewed  from  outer  space, the DSN  complex  looks like a  cluster  with  one 
large  (70-meter),  and  several  smaller  (34-meter)  antennas.  Antennas are the source of 
radio signals carrying  commands  and data to guide the actions of a spacecraft. As the 
Earth  turns, the cluster  begins  to  disappear  over  one  edge, to be  replaced by another at the 
opposite  edge,  which  continues as the source of radio signals  to the spacecraft. It is 
equally true that the same antennas are  listening to any  signal sent Earthward by a 
spacecraft. The very  tiny  amount of radio  energy  from the spacecraft is collected and 
focussed by the precision  quasi-parabolic dish antennas into  microwave  equipment  which 
amplifies  it in low-noise  amplifiers  that  operate at temperatures near absolute zero. From 
these amplifiers, the signal passes on to  other  equipment that eventually  transforms it into 
a' replica of the  data that originated on the spacecraft.  Thus, the DSN is a  data 
communication  service  that accepts a  stream of data to be  transported to a spacecraft and 
delivers  another stream of data that  originated on the spacecraft. 

An  example of the NASNJPL beam-wave  guide  (BWG) antenna with  34-meter dish 
is shown in Fig.1.  The antenna can  rotate  with  respect to the azimuth (vertical) and 
elevation  (horizontal)  axes.  Rotation in azimuth is accomplished by moving the entire 
structure on a  circular  azimuth track 

Precision  pointing of the  narrow  signal  to the spacecraft is critical, especially  when 
making  initial  contact  without  having  a  received signal for  reference. The required 
precision is proportional  to the beamwidth  of the signal, which is 22  millidegrees at S- 
band,  5.9  millidegrees at X-Band,  and 1.5 millidegrees at Ka-Band.  Thus, the high 
frequency  (and  most  effective)  Ka-band requires the most  precise  tracking. 

Consider  now  radiotelescopes.  A  goal of today's radio astronomy  is to detect  radio 
waves  emanating  from  gas  and  dust in the coldest regions of the universe - regions  which 
emit  insignificantly at wavelengths  to  which the human eye is sensitive (1/2,00Oth of a 
millimeter),  but  which  produce  relatively  strong signals at wavelengths  near  1 millimeter. 
Large  telescope size and  ability to collect  signals of very  high  frequency are the keys  to 
achieve this goal. New radiotelescopes  under construction: 100-meter  Green  Bank 
Telescope  (GBT)  in  West  Virginia  and  50-meter  Large  Millimeter  Wavelength  Telescope 
(LMT) in Mexico  will  serve  these  purposes.  The  high-frequency signal requires a  very 
high  precision  pointing,  and  large-size structure makes this goal  rather difficult. 

A  controller that supervises the tracking  of the antenna or radiotelescope  shall 
guarantee the required  tracking  precision. This precision is achieved  using an LQG 
(Linear  Quadratic  Gaussian)  algorithm. The LQG controllers for antennas and 
radiotelescopes  have  been  designed  and  implemented, see Refs. [I], [2],  and  [3].  Their 
design is an iterative  process that requires  experience, time, and  patience (there is  no 
explicit relationship  between  control  design  parameters  and  its  performance). In order to 
make the process  of the controller  design  simple  and  user-friendly  a controller design 
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GUI was  developed. This paper describes the Matlab  based software, with  two-stage 
controller  design  approach: basic LQG design and  fine-tuning of the antenna LQG 
algorithm. The Matlab  GUI  presented  here simplifies the design  process,  and creates a 
user-friendly  environment in which  one  with  a  limited  control  engineering  background 
may  “play”  to  obtain  a  tracking  algorithm of an excellent tracking  performance. 

2. Open-Loop Antenna Model 

Prior to antenna  controller  design  one  must  collect information pertaining  to the 
open-loop antenna model. The antenna open  loop  (or  rate-loop)  model is obtained either 
from finite element analysis or  from  system  identification  procedures  (that  include  field 
tests). The model consists of the antenna structure  and  the  azimuth  and  elevation drives, 
as in Fig.2. 

The inputs are azimuth and  elevation  rates,  and  wind  gust  disturbances. The outputs 
are azimuth and  elevation  encoder  positions,  and  cross-elevation  and elevation beam 
errors. The rate-loop  model in this form is typically  obtained  from  a finite element model. 
It is a  two-axis  model, in which  wind  gusts  act  directly on the structure surface. 

The finite element  model  can  be  simplified by decoupling  azimuth  and elevation 
axes  and  consequently  separating the azimuth  and  elevation  models. This is justified by a 
weak  cross  coupling  between  azimuth  command  and  elevation encoder, and  between 
elevation  command  and azimuth encoder. Less than  one  one-thousandth of the coupling 
exists between azimuth and  elevation commandencoder than does between  command 
and  encoder  readings of either one of these axes alone. 

The  rate-loop  models  obtained  from  field  tests  are  one-axis  models.  For these models 
cross-elevation  and  elevation  beam position outputs are unavailable,  and the wind 
disturbances  are  applied to the drive input  rather  then  to the antenna structure. A typical 
model  obtained  from the field data is shown in Fig.3. 

The rate-loop  model is linear, and  represented in the state-space  form as the rate-loop 
triple (A, B, C), where A is the state matrix, B is the input  matrix,  and C is the output 
matrix.  Arbitrary  coordinates  can  be  used  for  the state space  representation. For the 
convenience of the LQG  controller  design the GUI transforms the rate-loop triple into the 
modal  coordinates. A description  of the state  space  modal  coordinates  is  given in Ref. 
[41. 

3. Performance  Criteria 

The antenna performance is characterized  mainly by its step responses,  rate offset 
errors,  wind  disturbance  rms errors, and  transfer  function  bandwidth. 
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The step response is characterized by the settling time and the overshoot. The first of 
which is defined as the time at which the antenna  encoder  output  remains  within 3% 
threshold of the nominal  value of the step  command. A 14.8s settling time due to a unit 
step  command is illustrated  in  Fig.4a.  Overshoot (in percent) is the relative difference 
between the maximal  encoder  output  and the commanded  step  with  respect to the value 
of the  commanded  step. In Fig.4a the overshoot is 18%. 

The magnitude  and  phase of the transfer function  of the DSS26 antenna rate loop 
model  (azimuth  axis) is shown in Fig.5.  One  with a controls background can see that the 
model  has  one  pole at zero (slope of the magnitude  of the transfer function is -20 dB/dec 
for  low  frequencies). This pole is observed as a rigid-body  rotation of the antenna with 
respect to azimuth axis,  and in analytical terms, the  system  behaves as an integrator at 
low  frequencies.  The  closed-loop  transfer  function  of the antenna is shown in Fig.4b. 
Bandwidth is the frequency at which the magnitude drops 3 dB, or to 70.7%  of its zero 
frequency  level (which is 1). This is illustrated in Fig.4b,  where  bandwidth is 0.16 Hz. 

The rate-offset  response is characterized  with the steady-state error. Fig.6  shows the 
0.06 deg/s rate offset command  and the antenna response. The steady-state error (lagging) 
is 0.012 deg. 

Wind  gusts  action is characterized by the encoders  rms  (root-mean-square) errors. 

Although we don’t plot rms  error  separately, its value is computed in the simulation. 
For a visual  display  of an antenna encoder  response to 20-mph  wind  gusts,  see  Fig.7 
where there is an  rms  value of 0.10  mdeg. 

4. Designing  the LQG Controller 

The controller design process consists of choosing the controller configuration and 
determining  the controller gains. 

4.1. Choosing  the  Controller  Configuration 

The  LQG controller is a model-based  controller. This means that the antenna rate- 
loop  model is a part  of the controller. It is used  to  estimate the non-measured  antenna 
states  using the measured  rate  input  and the encoder output. In  order to ensure estimation 
accuracy, the antenna model shall closely  match the actual antenna dynamics (thus, the 
finite element  model is unacceptable).  Generally, the finite element  model is used in the 
antenna  design stage when a model  of a “real” antenna is not  yet available. For 
implementation  purposes, the rate  loop  model  obtained  from the field test is used.  This 
“real”  model is obtained  from an existing  antenna by conducting  field tests and  system 
identification.  The  obtained  model is given in the form of a state space representation. 
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The states of the LQG  controller are divided  into the tracking states (antenna position 
error  and its integral),  and the flexible  mode  states (flexible mode displacements). For 
this configuration the antenna state vector is of the following form: 

x = {ei e x ,  xfll  xf12 Xfnl xfn2Y 

where ei is the integral of the servo error, e is the servo  error  and x,  is a variable  from the 
system identification model  (of  unexplained  physical  interpretation).  Each flexible mode 
is described by two state variables, thus xfll,   xf12 are the two state components of the 
first  natural  mode,  and x f n 1 ,  x f n 2  are the two  state  components of the nth  natural  mode. 
The  BWG  antennas  typically  have n= 5 natural  modes. 

4.2. Determining  LQG  Controller  Gains  by Tuning its  Weights 

The  LQG  closed  loop  system  block  diagram is shown in Fig.8. It consists of an 
estimator that estimates the antenna states based on measured antenna input (u)  and 
output (j). The estimator has its own gain, K ,  , to  ensure the minimal estimation error. 
The  proportional ( k ,  ), integral ( k j  ), and  flexible mode ( K f  ) gains are  also  included in 
the model inputs to control the estimated state and the output. The design  task  is  to 
determine the gains  such that the antenna  performance is optimal. The analytical 
background  for the determination of the gains,  and  detailed  block  diagram of the LQG 
control  system  are  given in the Appendix. 

The  process  of  determining the LQG gains is explained in detail in Ref. [ 11. Here,  we 
explain the approach in a heuristic way. The controller  gains  depend on the weight  matrix 
Q and covariance matrix V. The  weight  matrix  shapes the optimization  index, a positive 
variable to be  minimized.  The  covariance matrix specifies the noise in the system, and it 
impacts the estimator  gains.  The difficulty arises  when  one tries to express the 
performance of the antenna (such as the rms servo error in  wind,  closed  loop  bandwidth, 
etc.)  through the values of Q and V. A closed-form  relationship  does  not exist between 
those  matrices  and the required  behavior of an antenna. Thus, an immediate solution is a 
“trial-and-error”  approach.  However, there are too  many  parameters  in Q and V to make 
this approach  effective.  Moreover, Q and V depend on the choice of the state-space 
coordinates,  with  some  coordinates  more  useful  than  others.  Physical coordinates, such as 
structural  displacements,  motor  torques  or  currents,  although  easy to interpret,  are  highly 
coupled,  therefore create undesirable difficulties. It was verified that the modal 
coordinates  simplify the design  because  they  are  weakly  coupled (i.e., modifications of 
one  of  them  weakly  impact the remaining  ones).  In  consequence, Q and V matrices are 
diagonal  (therefore there are less parameters  to  control the closed-loop  dynamics). 
Additionally, we assume the equality  of Q and V; i.e., Q =V. This simplification eases the 
search  for the “best”  controller  and is rather  opportunistic,  with a goal  to  simplify the 
GUI approach.  Experience shows, however, that the results  obtained  using this 
assumption  are  satisfactory  or even exceed the expectations.  The  reader shall note  that in 
individual  cases, the tuning of Q and V separately  may  improve the performance. 
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Taking  into  account  the  above  considerations, the matrices Q and V are diagonal, 
i.e., Q =V=diag(q),  where q is a weighting  vector. Note that components  of q correspond 
to the components of the state  vector x .  Thus, for the state vector as in section 4.1, the 
weighting  vector  has the form  similar  to x 

where qei is the  weight  of the integral of the servo error, q e  is the weight of the servo 
error, q, is the weight of the variable x,, q f l  is the weight  of the first natural  mode,  and 
q f .  is the weight of the nth  natural  mode. 

Now,  we  have to specify 2n+3 weights,  which, for a typical  number n=4 it makes  11 
weights. The critical  fact is that the weights  have  weak  dependence  amongst each other: 
the ith  modal  weight, qf i  , impacts  mostly the ith  mode,  i.e.,  state  variables, xpl , and 
x j 2 .  Also, the “tracking”  weights, q e ,  qei ,  and q, impact  mostly the “tracking” states, e, 
ei, and x,, see Ref. [ 13. The design process is illustrated in the next subsection. 

4.3. GUI for  the LQG Controller  Design 

The  GUI  display is shown in Fig.9. The GUI  allows  for simple manipulations  of 
the  design  parameters  and  observations  of  the antenna performance to make  design 
decisions.  Alternative  methods  involve  Matlab  code  manipulation. 

1 .  

2. 

3. 

On the left-hand side of the interface, there is a short description of the tool. The 
description falls under the heading  ‘LQG  Controller for BWG  Antenna’.  LQG stands 
for  Linear  Quadratic  Gaussian.  This is a model-based controller, meaning the 
antenna’s linear model is a part  of the controller. Quadratic refers to the index  that 
the  controller  minimizes,  and Gaussian refers to disturbances  and  noises  acting on the 
antenna.  BWG is simply a Beam  Wave-Guide antenna. 
The frame below the description  contains a “ . mat” file (Matlab’s data file). In our 
case this file holds the A, B, and C matrices  described in the Appendix, see equations 
(Ala) and (Alb). These are the parameters of the antenna rate-loop  model. ‘a’ is a 
square  matrix,  n-by-n. ‘by is a column  vector:  n-by-1,  and ‘c’ is a row vector:  1-by-n. 
The user  must  enter load filename . m a t  in the editable text box. 

We now focus on the eight sliders and their three  displays.  These are the  user tools to 
modify the controller’s performance.  To  understand  how these play a role in 
controller  design,  look  back  to Section 4.2. 

Each  slider  (except the wind-speed slider) ranges  from 0 to 100 (these are 
dimensionless  numbers).  By  clicking on the end  arrows, the marker  will  move one 
tenth of a slider  unit in that direction.  Clicking in the slider’s path will  move it one 
slider  unit  in that direction. Alternatively, the user  may  drag the marker  any distance. 
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To  be  sure  of  what  value the controller is using,  note the numerical  value  directly 
to the right of the slider,  and the appropriate of the three adjacent displays (for 
relative  weight  comparisons).  The  method of determining  where to position the 
marker  along each slider is documented later, in Section 4.4. Also, see the tooltip 
strings (‘Tooltip strings’  are the little yellow  messages  that pop up  when the mouse 
lingers too  long  over  one  spot)  for a description of which slider effects what  most 
heavily.  If  you  choose to go on without  understanding the cause and effect 
relationships  of this controller, the best  advice  we  can  offer is to  start  with  all the 
weights at zero  and to slowly adjust  them. 

4. In the bottom right corner  of the GUI screen are the simulation  results  and the values 
of the proportional  and integral gains.  Each  of the result  headings  will display a one- 
sentence  description  of  what  it  represents in a ‘tooltip string’. Each of the values 
below are updated after the ‘Simulate’  button  is  pressed. 

5. The  upper-left  plot is the step response  to a one-degree  offset. The upper-right  plot is 
the  magnitude of the transfer function of the  closed-loop  system. The axes are 
labeled,  and  between the two plots there is a legend. 

6. The  “simulate”  button is used to execute the simulation with the parameters on the 
screen. 

The  antenna  performance  can  be  observed on the GUI  display,  see  Fig.lOa,b: 

Settling time refers  to the time it takes for the step response  to  get  (and stay) within 
3% of the commanded  response.  The two gray lines in the upper  left-hand  plot 
represent this +3 ‘ Y O  range. In the event  that the user  creates an unstable controller, this 
value  will  reference herhim to the Matlab  command  window (which must  be  open 
anyway),  where a message  will  be  printed  to the screen describing the model’s 
instability. 
Bandwidth is the frequency at which the magnitude  of the transfer function moves 
below  -3dB  (or  below  0.71).  The  0.71  value is marked in gray on the upper  right 

Not  surprisingly, overshoot is the percent  that the antenna overshoots it’s commanded 
value. 
rms  (root mean square) error indicates the servo  error  value in wind gusts for the 
selected  wind  speed. 
Steady  state rate offset error is the difference between the actual antenna position and 
the commanded position when the antenna is moving  with a constant rate. This value 
shall  be  zero  under  steady-state  conditions. 
Maximum disturbance is the maximum  value  of the antenna  response  to the unit step 
disturbance. 

Below  these six outputs the proportional  and  integral gains are displayed,  which are 

plot. 

related,  non-linearly, to the proportional  and  integral weights. These values are  of 
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importance  because  from  them, the experienced  user  may  gather  information  about the 
controller’s  robustness. 

The performance  of the antenna depends on all controller  gains, or all  controller 
weights. The relationship is not  simple,  and  depends on the coordinates the antenna 
model is represented in. Generally,  changing a single weight impacts more than one 
performance features. If one  wants  to  change a single feature, e.g.  expand the bandwidth, 
one  needs  to  change  many  weights.  However, in the modal coordinates of the antenna 
model  each  weight  influences  predominantly  one  or two performance features, and is 
weakly  coupled  with the remaining  ones. This helps to follow the improvement  of the 
antenna  performance, since each slider  predominantly  addresses a single  performance 
feature (such as  bandwidth,  vibrations,  overshoot, etc.). The table below summarizes 
these  relationships,  while  Figure  11  shows the relationships  between the step response 
and the magnitude  of the transfer  function. 

TABLE I .  Relationship  between LQG weights  and  the  performance 

Proportional weight w Settling time, bandwidth,  disturbance  rejection 
Integral weight w Overshoot,  rate  offset error, disturbance rejection 
Special weight w This slider move in emergency only 
Frequency weight 1 w Vibration  amplitude of the lowest (fundamental) 

frequency, height of the first resonance peak 
Frequency weight 2 w Vibration  amplitude of the second frequency, height 

of the second resonance peak 
Frequency weight 3 w Vibration  amplitude of the third frequency, height of 

the third resonance peak 
Frequency weight 4 Vibration  amplitude of the fourth frequency, height 

of the fourth resonance peak 

4.4. DSS26  Antenna  Example 

The following steps correspond  to the interfaces  pictured  below in Figs. 12a-f. These steps 
reflect  antennas  common features, and can be  followed as a guideline to the controller 
design  process: 

0.  The design starts with the input of the state space representation of the open- 
loop antenna model. For  example, the DSS26 antenna representation (A,B,C,D) is a 
file abc.mat located at the directory c : / m a t l a b r l l / l q g / g u i / a z .  In the lower  left 
window  we enter: load c :  /matlabrll/lqg/gui/az/abc.mat. 
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1. Next, we select arbitrary, but small,  values  of  proportional and integral  weights 
(say q,,=O. I and qe=0.3) and zero  for  special and frequency weights see Fig.  12a. 
After  simulation the step response  shows  excessive  settling time and  overshoot (8.52s 
and  18%  respectively),  visible  flexible oscillations and an unacceptable  maximal 
disturbance step value (0.82 deg). The  magnitude of the transfer function shows low 
bandwidth  (0.21  Hz), sharp resonance peaks, and a larger-than-desired  magnitude of 
the  disturbance transfer function. 

2. The  most  excessive oscillations come  from the first (or fundamental) mode. Therefore 
the  weight  of  the  first flexible mode  is  increased to 5, and other weights are 
unchanged, as shown in Fig.12b. The  results  are  visible in the step responses  where 
the oscillations are  now  invisible,  and  in the transfer function where the first resonant 
peak  disappeared.  Other  parameters  remained  unchanged except for the disturbance 
responses  that  deteriorated,  and the second  resonance  peak is excessive. 

3. The proportional weight is increased to 10, c.f., Fig.12~. This move  reduced the 
settling time  to 3 . 8 ~ ~  overshoot to 3.6%, and  expanded  bandwidth  to 0.6 Hz.  The 
maximum  disturbance  step  response is lowered  to 0.49degY but the second  resonance 
peak  has  raised  to a dangerous  level. 

4. The integral  gain was increased to 3,  refer to Fig.12d.  While  bandwidth  was 
expanded  to  0.8 Hz and  maximum of the disturbance step  response is reduced to 0.41, 
overshoot  and settling time increased to 13%  and  4.0s  respectively. 

5. In this step the second  resonance  peak is damped, by increasing  the  “Frequency 
Weight 3” to  10  see  Fig.12e. The step  responses are smoother, the second  resonance 
peak in the magnitude  of the transfer functions is reduced. 

6. In  the final step, the proportional  weight  is  increased to  25 and integral  weight  is 
increased to 12, c.f., Fig.12f.  The settling time decreased (3.0 s), but  overshoot 
increased  (14%). The maximum  step  disturbance  response  decreased to 0.38 deg  and 
the bandwidth  significantly  increased to 2.2  Hz.  This is an acceptable solution and in 
order to save the weights  governing the output, we hit  the  ‘Weights’ button and the 
values are printed to the Matlab  command  window.  Now  we  close the design 
window  and  begin the next stage of design, the fine tuning of the controller. 

5. Fine Tuning of  the LQG Controller 

Certain  features of the controller  obtained  through the approach  described above can 
be improved by further modifying the controller  weights.  For  example, the oscillations of 
the closed-loop  response  can  be  further  reduced or the closed-loop response can be 
modified  such  that the wind  disturbance does not  exceed its specification. However, at 
this stage, the closed-loop states are not as easily  decoupled as the open-loop  states, 
therefore the relationship  between the weights  and the closed-loop  dynamics is less clear, 
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and  often difficult to track. For this reason a constrained  optimization  approach is used to 
tune the already  designed  controller. 

5.1. Description of Variables 

1. 

2. 

3 .  
4. 
5 .  
6 .  
7. 

8. 

In this approach the weights are design  parameters,  and the following variables are 
either  optimized or constrained: 

steady  state  servo  error in the 0.1  deg/s rate offset, e, (mdeg),  defined as 
e, = Ilr(t) - y(t)ll, , for 18 < t < 20 s . 
max  value  of the servo  error due to the unit  step  disturbance (deg) 

rms servo  error in 15  mph  wind gusts, e ,  (mdeg), for 0 5 t I 100 s 
overshoot of the unit  step  response, e,  (YO) 
settling time of the unit  step  response, t, (s) 
bandwidth, f ,  (Hz) 
magnitude of the closed-loop  transfer function (from the command to the encoder) for 
high  frequency  range  (above 3.5 Hz), that is mh = max m( f )  , for f 2 3.5 Hz 
magnitude  of the closed-loop  transfer  function  (from the disturbance to the encoder), 
i.e., mdmm = max md , for f 2 0 Hz. 

The  index  (a  positive function to be minimized) is defined as follows: 

f = wle, + w2edmm + w3e, + w4e, + wsts + w 6 ( 3  - f , )  + w7mh + w8mdmm 

Each  variable in the function to be minimized is weighted  (or  multiplied by a positive 
number). The weight wi , indicates the relative  importance of each variable.  If wi = 0 the 
ith  variable is not  optimized. In the above-defined  function,  the  bandwidth is maximized 
by  using 3 - f ,  variable  rather  than  the  bandwidth f ,  itself.  For  BWG  antennas the 
bandwidth  will  not  exceed 3 Hz,  therefore the minimization  of 3 - f ,  leads to expansion 

of f ,  * 

The variables  above  are  functions of the LQG  weights, qi , i=l, ..., n, therefore f is 
function  of q as well. The initial values of the LQG  weights are taken from the design 
part of GUI, as described  in Section 4. 

5.2. GUI Description 

This tool is quite similar to the previously  described tool, see Fig.13. The two  plots 
of the  fine-tuning  GUI are identical  to  those of the design GUI except that the step  plot 
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has  a  ten  second span of x-axis in the fine-tuning  GUI. The user is given  a line on which 
shehe enters the file containing the discrete time state  space  representation of the rate- 
loop  model  (either  azimuth or elevation axis). 

In this GUI,  there are eight variables  explained  above  that  can be either minimized, 
or constrained.  Different  variables  and their changes are displayed  and since the start can 
be  tracked  throughout. The user  may also view the initial  variable  values, the iteration 
number,  and the function value in the Matlab  command  window, see Fig. 14. 

The  fine-tuning  GUI is meant  only as a  small  improvement tool. This restriction 
follows  from the fact that the program  searches  for  local  minimum  only,  hence  dramatic 
improvement is not  expected,  unless the initial design is a  lousy  one.  The  requirement  to 
dramatically  improve the design (by  setting  demanding constraints for example) usually 
leads  to the termination  of the program  with the message  “no feasible solution exists” in 
the Matlab  command  window. 

The  Matlab  optimization  function, constr, is used  here to find  a  local  minimum  of  a 
constrained,  nonlinear,  multivariable  function.  Before  attempting  to  minimize  a  function, 
it will  ensure  that the constraints  have  been  met.  Two  main decisions must be  made  when 
using the constr hc t ion .  One is whether to optimize  or  constrain  a certain variable.  The 
other is how many iterations are necessary  to run in a  block. Too many iterations may 
require  long  simulation time and  give  the  user the feeling of  being out of control, too few 
requires  frequent  re-starting. 

5.3. Fine-Tuning  Procedure 

The  following  procedure is recommended to tune the controller  using the GUI: 

1 .  For each variable verify the starting values by clicking on the ‘optimization 
weights’  (rather  than ‘constrain’) radiobutton,  and set the weights to zero.  Construct 
the weight  vector: 

- 
Integral 

Proportional 
Special 

Frequency1 
Frequency2 
Frequency3 

- Frequency4 

using the last  values  from the design  GUI.  (Using  arbitrary initial values  will  most 
likely  result  in an ‘infeasible’  result.)  Run the optimizer by setting maximum  number 
of  iterations  to 1 and by pressing  the  ‘Optimize’  pushbutton. 

2. Keep  all  of the ‘optimize’  radiobuttons  on,  but scale  the  different variables 
according  to your priorities, i.e.  change the weights to nonzero  prioritized  values. 
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3. 

Run this optimization in increments of about  300  iterations,  or  until the system is 
optimized. 
Note: If  the  system  does  not  find the optimal  solution on the first run  through,  be sure 
to  keep the weight  vector  (pushbutton  above the weight  vector  display) to begin at the 
previous  finish  point.  To  use  these  values the ‘Keep’  pushbutton  must be pushed 
before the ‘Optimization’  pushbutton. 

After the system is optimized  (‘Converged Successfilly’ is printed in the Matlab 
command  window),  look  through the values of the variables  and decide  which 
performance values are  acceptable and  which are not.  Of the ones  that  are  not, 
select the least  acceptable.  Starting  with  the  least  acceptable  variable,  choose its 
‘constrain’  radiobutton  and  select a constraint  value  that is tighter than the current 
value,  but  loose  enough so that the solution is feasible. If infeasible  values are 
selected, the algorithm  will  let the user  know  right  away.  Refresh the weights  if 
necessary.  Again,  reset the weight  vector to pick  up  where it left  off  and run the 
optimization  until  it  converges successfully. 

4. Repeat the previous step (not forgetting to reset the weights  vector  before  pushing the 
‘Optimize’  button), constraining  each  unacceptable variable until the  desired 
output is achieved. 

Because it is the gains ( K i  , K ,  , K ,  , and K ,  ) that are needed to implement a controls 
design,  these  values are saved  (and  replace  previous  values)  after each block  of iterations 
as g a i n s .  mat in the working  directory. 

5.4. DSS26 Antenna Example 

We start  with the final design of Section 4 and follow the  procedure in Section 5.3. 
The steps below  correspond to the interfaces  pictured  in Figs. 15a-d. The goal is to 
improve the design by increasing  damping of the higher  frequency oscillations (the 
vibrations  are  visible in the step response)  and  to  improve the rms error due to  wind 
disturbances.  Other  beneficial  results  were  obtained as a byproduct of our efforts. 

1.  Verify  the starting values with the weight  vector equaling: 

r 

12 
25 
0 
5 
0 
10 
0 - 
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The  result  is  shown in Fig.lSa, which is identical to Fig.  12f in section 4. 

2. 

3. 

Prioritize your goals. We wanted to minimize the rms error, so we assign the largest 
weight of 1.0 to this value.  Then,  we  wanted  to  improve the damping for the high 
frequencies  (and  additionally  the  disturbance  transfer function, the settling time and 
maximum  value of disturbance),  therefore we selected  0.1  weights  for these variables. 
We were satisfied with  bandwidth,  and rate error, therefore we weighted these with 
0.01.  Overshoot  was  not of concern for our  purposes, so we assign it a weight  of 
0.001. We chose a maximum of 300 iterations. At the end of these 300 iterations, the 
system  had still not  converged,  so we started  with the weight  matrix  from the 
previous  iteration  and  ran the system  again  for the next 300 iterations. This time it 
converged  after  about 100 iterations. The optimization  results are visible in Fig. 15b, 
which  shows  improved  values of all  variables,  except  overshoot. 

Review  the  performance. We  reviewed the performance  and  decided that the 
maximum  disturbance  was  unacceptable therefore we  constrained it to 0.34 at the 
same time relaxing  weighting  of  overshoot, settling time  and  bandwidth  values. 
Again  we  set the maximum  number of iterations to 300  and the system  converged 
after  about  200 evaluations. The  results are shown in F ig .15~~  where the constraint 
was  met  and  rms  error,  bandwidth,  and  overshoot  were  improved.  Command  transfer 
function  at  high  frequencies,  disturbance transfer function, and settling time 
deteriorated. 

4. Final  corrections. As a last step we constrained  overshoot to 25%  leaving  everything 
else as it was in step (3). The result  after  completing  300 iterations and another 100 
iterations is visible in Fig. 15d, with an overshoot of 23.3%  and additionally improved 
disturbance  transfer function, settling time and  maximum  disturbance. 

After  completing  these four steps,  we  were  satisfied  with the results  except  for 
bandwidth,  which  would  have  preferably  been  over  2.2  Hz. The next  step  involved 
constraining  bandwidth  to this value  and  leaving all other  settings as they  were. The 
result  was an infeasible  request. We next  tried  decreasing the optimization  weights,  but 
came  up  again  with  an  infeasible  outcome.  At this point  we  decided that the results 
actually  were quite ‘fine-tuned’  and  called it quits. 

6. Conclusions 

This  paper describes two  types  of  GUI  that help design LQG controllers for the antennas 
and  radio-telescopes: the LQG  controller  design  GUI,  and a GUI  for the fine-tuning  of 
the LQG  controller  design. In the design GUI the user  simply  manipulates  controller 
parameters  to  observe their impact on the closed-loop  system  performance  (such as 
overshoot,  settling time, bandwidth,  rate-offset error, maximum  response to step 
disturbance  and  response to wind  gusts). A procedure is given that guides the user 
towards  achieving a particular  goal.  The jne-tuning GUI  improves the already  designed 
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controller by running an optimization procedure. The closed loop performance besides 
the ones mentioned above include vibration  damping and maximum magnitude of the 
disturbance transfer finction, and are either optimized or constrained, so that a desired 
performance is approached. A procedure is given to guide the user towards achieving 
performance requirements. 
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APPENDIX. Derivation of the LQG Gains 

In the LQG  design  process the controller  gain ( K c ) ,  and the estimator  gain ( K ,  ) are 
determined.  The  LQG controller block  diagram is shown  in Fig.Al. It consists of the 
antenna  state  space  model (A,B,C), fiom which the antenna rate-loop equations are 
generated 

i = A x + B u + v .  
y = c x + w  

In this model the antenna state vector is denoted x.  The antenna is perturbed by random 
disturbances: the input noise, v, and the output  (or  measurement)  noise w. The input 
noise is predominantly  wind  disturbance,  and has covariance V. The  measurement  noise 
has  covariance 1. The assumption of unit  covariance of the measurement  noise  does  not 
impact the final  design  results,  since  proper  scaling  of the input disturbance can 
compensate  non-unit covariance value. It is assumed  that the input  and  output noises are 
not correlated. This assumption is equivalent to independence of their sources.  Indeed, 
the measurement  noise is independent of the wind  disturbances. 

The  estimator evaluates antenna states, using the rate  input (u) and the encoder  output 
(y) of the antenna.  The  estimated  state  vector is denoted 2 ,  and the error  between the 
actual  encoder  output  and the estimated  output is defined as E = y - C2 = y - j . The 
estimated  state is obtained fiom the following  equation: 

One  can see that the estimated state is proportional to the estimation error; the 
proportionality  gain K ,  is called the estimator  gain. 

The  controller  forms the negative  feedback  between the estimated  state 2 and the 
antenna input u 

u = -Kc2, 

where the controller  gain  matrix K c .  

The  task is to determine  both the controller  and  estimator  gains such that the 
performance  index J is minimal,  where 

J 2  = E ( j r ( x T Q x  + u'u)dt) 

and Q is given,  positive  semi-definite state weight  matrix. 

15 



t 

It is known, see Refs.[5,6],  that the minimum  of J is  obtained  for the controller gain 
matrix  obtained as 

K c  = B  S,, T 
(A51 

where B is the input  matrix  of the antenna  model,  and S, is a solution of the following 
Riccati  equation 

ATS,   +S,A-S,BBTS,  +Q=O.  (A61 

Similarly, the optimal  gain in the estimator  equation (A2) is given as follows 

K ,  = S,CT , (A7) 

where C is the output  matrix  of the antenna model,  and S,  is the solution of the 
following  algebraic Riccati equation 

AS,  +S,AT  -S,CTCS, +V = 0. (A8) 

Finally, the controller  gain is split unto  proportional,  integral,  and flexible mode  gains 

to fit into the configuration as in Fig.8. 
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FIGURE CAPTIONS: 

Figure 1. NASNJPL beam  wave-guide  antenna 

Figure 2.Open-loop (or rate-loop) antenna model 

Figure 3. Simplified rate-loop model 

Figure 4. Step response overshoot and settling time (upper figure), and transfer function 
bandwidth (lower figure). 

Figure 5. Bode plots of the DSS26 azimuth rate-loop model 

Figure 6. Rate offset command (dashed line),  and the antenna encoder reading (solid line) 

Figure 7. Antenna servo error in 20-mph wind gusts. 

Figure 8. Structure of the LQG control system 

Figure 9. Interface of the LQG design 

Figure 10. Design GUI displays: a) step responses, b) magnitudes of the transfer functions 

Figure 11. Properties of the step response and the magnitude of the transfer function 

Figure 12a. Interface 1, Example 4.4. 

Figure 12b. Interface 2, Example 4.4. 

Figure 12c. Interface 3, Example 4.4. 

Figure 12d. Interface 4, Example 4.4. 

Figure 12e. Interface 5, Example 4.4. 

Figure 12f. Interface 6, Example 4.4. 

Figure 13. The fine-tuning interface 

Figure 14. The fine tuning Matlab command  window: 

(a) Weight vector of the design parameters 
(b) Number of function evaluations before breaking 
(c) See section 4.1 below 
(d) Initial values of the variables 
(e) ‘constr’ output: 

f-count -- Iteration number 
0 function -- Value of function to be minimized 

max{g} -- Maximum constraint value 
0 step -- Step size 

procedures -- Infeasible.. .Hessian modified.. .etc. 
(f) Infeasible, Successful convergence, Maximum  number  of iterations 

Figure 15a. Interface 1, Example 5.4. 

Figure 15b. Interface 2, Example 5.4. 

Figure 15c. Interface 3, Example 5.4. 

Figure Ish. Interface 4, Example 5.4. 
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Figure Al .  The block  diagram of the LQG controller: A - antenna (hardware); E - estimator 
(software); PI - PI controller (software); F - flexible mode controller (software). Triangle denotes 
integration 

Variables: 
Y -  
u -  
r -  
e -  
ei - 
x -  
x -  
& -  

v -  
w -  

,. 

encoder output 
antenna rate input 
command 
servo error 
integral of the servo error 
antenna state 
estimated antenna state 
estimation error 
disturbances 
measurement noise 

Blocks: 

K e  - 
k ,  - 

K f  - 

ki - 

A -  
B -  
c -  
Cf - 

estimator gain 
proportional gain 

integral gain 

flexible mode gain 
state matrix 
input matrix 
output matrix 
flexible mode output matrix 
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> cd erin/lqg/gui/optimization 
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